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INTRODUCTION 

The properties of the propellant gas near the muzzle during and shortly 
after shot ejection are of interest since they determine the magnitude of the 
muzzle blast overpressure.  One important property is the temperature'  Schmidt, 
Gion, and Shear designed an apparatus to measure the sound speed and thereby 
calculate a temperature by assuming an equation-of-state for the propellant 
gas.  Schmidt, et al1 measured the propellant gas pressures as a function of 
time at different locations near the muzzle.  For slower moving projectiles, 
the propellant gas behind the projectile has subsonic flow conditions immedi- 
ately before shot ejection. After the projectile uncorks from the muzzle, an 
expansion wave propagates into the gun tube.  They approximate this expansion 
wave as being one-dimensional and thereby deduce the sound speed.  Further 
approximations may be made to calculate the propellant temperature. 

The complexity of the starting expansion wave might contribute toward the 
disagreement in temperature between experimental results and predictions from 
interior ballistics theory.2    Immediately after shot ejection, the expan- 
sion wave entering the gun tube is two-dimensional.  Gough2 contends that the 
initial two-dimensional nature of this wave might mask any effects produced 
by the initial chemically frozen wave propagating into the tube.  He also 
concludes that "The geometrical dispersion due to the two-dimensional geome- 
try of the unloading wave is too complicated to quantify as a source of 
error without further study." With the NOVA simulation code, Gough also 
found that the temperature of the propellant gas near the base of the pro- 
jectile was markedly higher. Additionally, Celmins3 indicates that the usual 
assumption of a very slow variation in propellant gas temperature with dis- 
tance from the muzzle might not be valid. 

1. E.  M.   Schmidt,  E.  J.   Gion,  and D.   D.  Shear,   "Aaoustio Thermometria 
Measurements of Propellant Gas Temperatures in Guns," U.  S.  Army Ballistic 
Research Laboratory,  Aberdeen Proving Ground,  MD,  BEL Report BRL-R-1919 
August  1976   (AD   A0Z02B9) 

2. P.   S.   Gough,   "On the Determination of the Gas Temperature from the  Velocity 
of the Muzzle Rarefaction Wave," U.   S.  Army Ballistic Research Laboratory, 
Aberdeen Proving Ground,  MD,  BRL Contractor Report BRL-CR-00504 
February  198Z   (AD A125479). 

Z.    A.   Celmins,   "Theoretical Accuracy of Acoustic Gas Temperature Measurements 
%n Guns, " U.   S.  Army Ballistic Research Laboratory,  Aberdeen Proving Ground, 
MD,   BRL Technical Report ARBRL-TR-022Z4,   January 1979   (AD A068461). 

4. A.   Celmins,   "Theoretical Basis of the Recoilless Rifle Interior Ballistics 
Code RECRIF," U.   S.  Army Ballistic Research Laboratory,  Aberdeen Proving 
Ground,  MD,   BRL Report BRL-R-19Z1,  September 1976   (AD B01Z8Z2L). 

5. P.   G.   Baer and J.  M.  Frankle,   "The Simulation of Interior Ballistic 
Performance of Guns by Digital Computer Program," V.  S.  Army Ballistic 
Research Laboratory, Aberdeen Proving Ground,  MD,  BRL Report BRL-R-118Z 
1962   (AD 299980). 



It is the objective of this work to examine the one-dimensional assump- 
tion and the flow details near the muzzle after shot ejection.  The time for 
transition from two-dimensional to one-dimensional flow is ascertained and the 
ettects upon the acoustic thermometry measurements and flow exterior to the 
gun barrel muzple is discussed. A gun-blast numerical-simulation code6'7 

modified for the particular problem is used to calculate the flow properties 
both inside and outside the gun barrel.  The results of the simulation can 
be compared wifh an experiment conducted at BRL.8 To examine the transition 
from a two-dimensional flow to the one-dimensional rarefaction wave, Mach 
contours are used to describe the different stages of the gun exhaust cycle. 

II.  EXPERIMENT 

In acoustic thermometry, the velocity of propagation of an acoustic wave 
is found by measuring the time for it to travel a known distance.  For this 
experiment,the disturbance is generated when the projectile uncorks and an 
expansion wave travels into the bore at a velocity equal to the propellant 
gas speed of sound minus the local outflow velocity of the propellant gases. 
An m-bore wave diagram is shown in Figure 1.  Five pressure transducers, 
mounted flush in the tube wall near the muzzle, record the passage of the 
expansion wave.  A pressure-time curve generated by the experiment is shown 
in Figure 2.  The rise in the first part of the pressure curve is caused by 
air being compressed ahead of the projectile as it travels down the tube. 
The rapid rise in pressure is associated with the passage of the projectile 
over the pressure transducer.  There is then a decay caused by in-bore waves 
reflecting from the breech and the base of the projectile. After the pro- 
jectile clears the muzzle, the expansion wave travels back toward the trans- 
ducer and, as it passes, the recorded pressure declines at a faster rate. The 
velocity of the propellant gases before the expansion reaches the transducers 
is assumed to be the projectile exit velocity; with the distances between 
transducers known and rarefaction wave time of arrival observed, the pro- 
pellant speed of sound can be deduced.  With an equation-of-state for the 
propellant gas assumed, the propellant gas temperature can be estimated. 

For this particular experiment, a square-based plastic projectile with 
a reduced loading of propellant is used in a 30 mm WECOM cannon with the 
muzzle device attached as shown in Figure 3.  Five pressure transducers were 
used in the muzzle device.  The distances of the gages from the muzzle are 
given in Table 1. 

6. G.  F.   Widhopf,  J.   C.  Buell,  and E.  M,  Schmidt,   "Time-Dependent Bear Field 

jinfwS^ FlOW Sirmlations' " AIAA Paper 82-00973, AIAA,  New York,  NY, 

7. J.  Euizinga,  G.   Grunwald,  and N.  French,   "Mobile ICBM Transporter Launcher 
Blast Loading and Hardness Assessment," Lockheed Missiles and Space 
Company Report LMSC-D053108, Huntsville,  AL,  December 1970. 

8. K.  S.  Pansier and G.  E.  Keller,   "Variation of Free-Field Muzzle Blast 
with Propellant Type, " 6th International Symposium on Ballistics, 
Orlando,  PL,  October 1981,  ADPA,  Arlington,   VA. 



TABLE 1.  GAGE DISTANCES 

Gage Number Distance from Muzzle (mm) 

1 
2 
3 
4 
5 

7 .0 
19, .7 
32, ,3 
45, .1 
57. ,7 

iectile'exit/^r!1".' ?"** *** desi^d  to bu" "P well before the pro- jectile exits the gun tube to minimize two-phase gas effects.  The parameters 
of the experiment are given below in Table 2. parameters 

TABLE 2.  WEAPON PARAMETERS 

Bore diameter, D 30 „„„ 

Bore and chamber volume, U         760 cm"5 

Projectile mass. Mp 112,9 gms 

Projectile velocity, Vp 572 m/s 

Propellant mass, C u.ve  gms 

Specific heat ratio, y 1.234 

Flame temperature, T 3000.°K 

Specific force, F 1.014*10^ (m/s)2 

III.  NUMERICAL MODEL 

With ^•/^"i1'1 m0del ^ 8Un bla8t devel0Ped ^ Widhopf, et al 6 is used. 
With this model, a conservative form of the unsteady Euler equations is solved 
using a one-component compressible gas.  These equations are: 

(Py)t +   (Pvy)y +   (puy)x =0 (!) 

CPuy)t + [yCp + u2)]x + (puvy)    = 0 C2) 

(pvy)t +   (puvy)x +   [y(p + v2)]   - p = 0 (3) 

(Pey)t +   [puy(e + p/p)]     +   [pvyCe + p/p)] = 0 

P =   (Y -  1)   e 

(4) 

(5) 



dl'^Hnn    pre8surf' x and y ^e the coordinates in the axial and radial 
dxrectxons respectively, u and v are the velocity components in the x and y 

eneTy '^^^'   P is the flu^ density and e is the specific internal 

The simulation code utilizes Godunov's scheme.9 The fluxes at the cell 
surfaces are determined by solving Reimann's problem.  Updated conservation 
values are obtained using these obtained fluxes in the conservation equations 
with a first order time differencing.  Surface properties are treated using 
analytic expression for one-dimensional wave reflections together with the 
boundary condition that the normal component of the velocity is zero. 

This implementation of the Godunov method permits cells to be sized 
differently to optimize resolution of flow structure, decrease computational 
time and save core memory.  Square cells with dimensions of 1 mm were placed 
throughout the bore from the muzzle to a position somewhat rearward of the 
last transducer placed in the gun barrel for the experiment.  The cells in 
the regions away from the transducers are of less interest and are made 
larger. The simulation technique is also modified to allow the projectile 
base to be initially at the muzzle plane position.  This modification allows 
a more detailed study of the formation of the expansion wave. 

The initial conditions outside the gun bore are given as ambient.  Although 
a precursor blast wave is generated by the projectile pushing air out of the 
gun barrel, this is neglected in the present calculations.  The in-bore condi- 
tions are assumed to be Lagrangian;10 that is, the velocity of the propellant 
gas increases linearly from the value zero at the breech to the projectile 
velocity at the base of the projectile.  The propellant gas density is assumed 
constant and the pressure increases from the muzzle to the breech according 
to the equation, 

P = Pm {(1 - C/2mp] [(L+x)
2/L2]} (6) 

where pm is the pressure at the muzzle immediately before uncorking, L is the 
length of the barrel and x is the axial coordinate with x=0 corresponding to 
the muzzle plane.  The muzzle pressure assumed for the problem is the value 
found by a simple internal ballistic theory.  The muzzle pressure is 83 MPa- 
by knowing the propellant charge mass and the bore-chamber volume, the density 
at uncorking is calculated to be 170.5 kg/m.3 The ideal gas equation of state 
gives the pre-uncorking speed of sound at the muzzle, a, as 775 m/s. 

9.     S   K.   Godunov,  A.  B.   Zabrodin,  and G.  P.  Prokopov,   "A Computational Scheme 
for Two~l)men8%onal Nonstationary Problems of Gas Dynamics and Calculation 
of the Flow from a Shock Wave Approaching a Stationary State," U.S.S.R. 
Computational Mathematics and Math Physios,  May 1961,  pp.   1187-1219. 

10.     J.   Comer,  Theory of the Interior Ballistics of Guns.  John Wiley,  NY, 
1960. i}3 

10 



IV.  RESULTS AND COMPARISON WITH EXPERIMENT 

Figure 4 shows a sequence of Mach contours generated by the numerical 
simulation technique.  For clarity, Mach contours are displayed in a small 
range around the sonic line.  The solid line closest to a dotted line Is the 

llnll  J1116^    ""tours above the projectile correspond to the recompression 
shock for the propellant gas plume.  Initially, the wave front should advance 
downward between the projectile and the muzzle at a speed equal to a. while 
the wave front should travel rearward with the speed a-u.  ?he contour shapes 

rearwardTr" T" t°.lndlcate. that this is occurring. As the wave travels 
rearward, the contour lines straighten out rapidly.  Utilizing the pre- 
uncorking speed of sound calculated in the previous section, the head of the 
wave should reach the first transducer between the 80th and the 90th steps. 
The contour lines at the position 7 mm from the muzzle are almost straight 
at these times.  The sonic line is also approaching the muzzle plane by 
90 cycles.  Thus, essentially, a flow pattern is established in time to 
obtain data for a one-dimensional rarefaction wave sweeping over all trans- 
ducers. 

It is usually assumed that the mass flux issuing from the muzzle plane 
has sonic conditions when performing a muzzle blast simulation.  This 
assumption saves computation time and core memory.  Examining the contour 
sequence in Figure 4, the sonic line is seen to be near the muzzle plane by 
the 90th cycle of computation. At this time .the muzzle blast front is still 
quite close to the muzzle.  Thus, it appears that the assumption is valid for 
muzzle blast simulations. 

It is also of interest to compare the pressure-time curves obtained by 
the numerical simulation technique with the data obtained with the pressure 
transducers.  Figure 5 shows the sequence of pressure-time curves at the 
various transducer positions obtained by both experiment and calculation. 
On the whole the initial values for the pressure are slightly higher utilizing 
interior ballistic theory with full burn-up of the powder assumed.  However. 
it is likely that the powder is not completely burnt.  It is also noted that 
the pressure fall-off is more rapid for the experiment than for the simulated 
results.  The major source of the disagreement is thought to be caused by the 
different sound speeds found for experiment and interior ballistics theory. 
The experimental value was found to be approximately 840 m/s whereas the 
interior ballistics value is 775 m/s assuming the ideal equation-of-state. 
Assumption of the more realistic Abel equation-of-state changes the calcu- 
lated sound speed only an insignificant amount.  Of course, faster sound 
speeds correspond to faster propellant gas emptying and therefore a faster 
pressure fall-off. Studies indicate2'3 that the propellant gas near the 
base of the projectile could have a higher temperature than in the region 
toward the breech.  The lack of better agreement may also be caused partially 

11 



by the large artificial viscosity implicit in the first order Godunov tech- 
nique.  Implementation of second order Godunov schemes11'12  might produce 
a cnsper more definitive waveform and better agreement with experiment. 

flow fLJd6 ^e-dim^8ional assumption is valid for the projectile in the 
t^e result^ Ulr^ll      eX?eCt.Jhat there ^ to be good agreement between 
the results when the projectile was included and when the proiectile was not 
included.  Without the projectile, the flow field within the bore is essel- 
tially one-dimensional immediately after firing and remains so.  Figure 6 

inTh/fi0^"^11 b^Ween the Pressure obtained with and without a projectile 
cnndl-   ..    :  ?" 8eqUenCe WaS run USinS lightly lower muzzle exit 
cTr   iT*.  t];a\the forffier ^quence. As might be expected, the pressures 
calculated at the transducer are at first identical.  Later, the effect of 

SH^M'T f ^V6" the mUZZle  " Seen to cau8e the Pressures to be 
slightly higher.  Nevertheless, the general shape of the curve is unaltered 
and wave speeds deduced from the two cases would be expected to be near^ 

VI.  CONCLUSIONS 

For all practical acoustic thermometry experiments of interest, the 
one-dimensional assumption for the rarefaction wave appears valid.  Compari- 
son between simulation and experiment yields fair agreement.  The major 
source of disagreement stems from the higher sound speeds obtained by experi- 
ment.  The reason for the higher sound speeds is not known although there 
have been some explanations for this behavior.3 Of course, if the numerical 
model were modified to take into account the possibility that higher tempera- 
tures were obtained near the muzzle, the results from the numerical model would 
much more closely approximate the experimental results. Most previous experi- 
menters have obtained lower sound speeds,but some of the results could be 
attributed to incomplete burning. 

11. Bram van Leev,. "Towards the Ultimate Conservation Difference Scheme. 
A Second Order Sequel to Godunov's Method," J.  Coma.  Phys.   (22) 
pp.   101-136,   1979. r        v > 

12.    S.  Evdelman,  P.  Colella,  and R.  P.  Shreeve,   "Application of the Godunov 
Method and Evgher Order Extensions of the Godunov Method to Cascade 
Flow Modeling, " AIAA-83-1941-op,  AIAA 6th Computational Fluid Dynamics 
Conference,  Danvers,  MA,  July 13-15,   1983. 

12 



MUZZLE  EXPANSION 

niltii/Kfiii/nnli///////,///,,//,///,//,/,///.,, 

Figure 1.  In-Bore Wave Diagram 
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